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O Basics

Trees are connected acyclic graphs

* Theorem 1:

A graph G is a tree 7ff any two vertices are connected with a unique path.

* Theorem 2:

In atree T it holds thatm =n —1




TREES

O Basics

Trees are connected acyclic graphs

* Theorem 1:

A graph G is a tree 7ff any two vertices are connected with a unique path.

* Theorem 2:

In atree T it holds thatm =n —1

o Forn=1 - m =0 (it holds for n=1)
o Assumption: Let that it holds for all the tree with kK < n vertices, k = 2
o Let T a tree with n vertices and m edges, and e € T

o Delete e from T = T — e results to two trees = T;(nq, my) and T,(n,, m,)

1. from the assumption it holds that m; = n; —land m, =n, — 1
2. n=ny+n,andm=my +m, +1

»,>m=0—-1D+Mn,—-1)+1=n+n,—1=n-1 o




TREES

O Basics

Trees are connected acyclic graphs

Theorem 1:

A graph G is a tree 7ff any two vertices are connected with a unique path.

Theorem 2:
In atree T it holds thatm =n —1

Corollary 1:

In each tree there exist at least two vertices with degree 1




TREES

O Basics

Trees are connected acyclic graphs

Theorem 1:

A graph G is a tree 7ff any two vertices are connected with a unique path.

Theorem 2:
Inatree T itholdsthatm =n—1

Corollary 1:

In each tree there exist at least two vertices with degree 1
o It holds that 2Zm = 2(n — 1)

o Letdq,dy,...,d,, and d; = 1 and d; = 2

oThen X di=14+2(n—-1)=2n-1

Contradiction!
oitholds )it d;=2m=2(n—-1) =2n—-2




TREES

O Basics

® Trees are connected acyclic graphs

* Theorem 1:

A graph G is a tree 7ff any two vertices are connected with a unique path.

* Theorem 2:

Inatree T itholdsthatm =n—1

* Corollary 1:

In each tree there exist at least two vertices with degree 1.

* Corollary 2 (necessary but not sufficient condition):

A non increasing sequence of integers, let St dq, d,, ..., d; belongs to a tree

only if every d; is a positive integer and it holds that

Zdi=2(n—1)

i=1
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O Basics

Theorem 3:

An acyclic graph G with n vertices and n — 1 edges is connected

o Let that there exist a graph G with n vertices and n — 1 edges which is not

connected.
o In that case, it is composed by two or more components.
o Let that it is composed by two components 1 and G5.

o We assume an edge let (v, w): v € G and w € G5. So, no cycle is

constructed, since before there was no other path between v and w.

o Hence the graph G is a connected acyclic graph (i.e., tree) with n vertices

and n edges. Contradiction to Theorem 2.




TREES

O Basics
* Theorem 3:

An acyclic graph G with n vertices and n — 1 edges is connected

* Theorem 4:

Every connected graph G with n vertices and n — 1 edges is tree

* Theorem 5:

A graph is a tree if it is minimally connected
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O Basics

® Tree Requirements:
A connected graph G with n vertices is tree:
o If it does not contain cycles
o If there exist a unique path between any arbitrary pair of vertices
o If every edge is a bridge
o If itis composed by n — 1 edges
o If it contains at least two vertices of degree 1 (n = 2)

o If it is produced only on cycle by adding an edge.
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O Basics

* Corollary 3:

A forest (of trees) with n vertices and k components (trees) has ? ? 7 edges
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O Basics

* Corollary 3:

A forest (of trees) with n vertices and k components (trees) has n — k edges




TREES

O Basics

* Corollary 3:

A forest (of trees) with n vertices and k components (trees) has n — k edges

* Theorem 6 (Jordan, 1869):

A tree has center consisted by one or two vertices.

* Corollary 4:

If the center of a tree is consisted by two vertices, then they are adjacent and

are called bicenters.
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O Basics

* Corollary 3:

A forest (of trees) with n vertices and k components (trees) has n — k edges

* Theorem 6 (Jordan, 1869):

A tree has center consisted by one or two vertices.

* Corollary 4:

If the center of a tree is consisted by two vertices, then they are adjacent and

are called bicenters.




TREES

O Basics

* Corollary 3:

A forest (of trees) with n vertices and k components (trees) has n — k edges

* Theorem 6 (Jordan, 1869):

A tree has center consisted by one or two vertices.

* Corollary 4:

If the center of a tree is consisted by two vertices, then they are adjacent and

are called bicenters.
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O Listing of Trees

* Theorem 8:

Suppose the sum of the positive integers dq,dy, ..., d, (wWhere n = 2) is

2n — 2. The number of trees with n nodes, where node degrees are
(n—2)!

(d1-1)!(dg=1)! ..(dp—1)!

dq,dy, ..., dy, equals:




TREES

O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

O O O O O 0O o 6 0 © o @
@ ®@ 606 0 O O O O 66 ® O &
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TREES

O Listing of Trees
* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n

n-—2

Cyx Hyp 42, number of isomers
Carbon : 4 bonds
Hydrogen: 1 bond

n==k+2k+2 =3k + 2

sd (v) _ 4k +2k+2
2 2

=3k + 1

Arthur Cayley
1857




TREES

O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

Cyx Hyp 42, number of isomers
Carbon : 4 bonds
Hydrogen: 1 bond

n=%k+ 2k + 2

sd (v) _ 4k +2k+2
2 2

Arthur Cayley
1857
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TREES

O Listing of Trees

* Theorem 8:

n-—2

The number of discrete trees with labeled vertices, of order n, are n
1. Assign labels to the vertices of the tree as 1, 2, ..., n.

2. Find the vertex with degree 1 with the smallest inscription, let a; and delete it.
3. Let by its neighboring vertex

4. Repeat the procedure in the remaining subgraph.

5. After n — 2 deletions, the resulting tree has one edge, having created
S: (bll bz, ver ) bn_z).




TREES

O Listing of Trees

* Theorem 8:

n-—2

The number of discrete trees with labeled vertices, of order n, are n
1. Assign labels to the vertices of the tree as 1, 2, ..., n.

2. Find the vertex with degree 1 with the smallest inscription, let a; and delete it.
3. Let by its neighboring vertex

4. Repeat the procedure in the remaining subgraph.

. After n — 2 deletions, the resulting tree has one edge, having created

S: (bll bz, ver ) bn_z).

U

2 o~
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O Listing of Trees

* Theorem 8:

n-—2

The number of discrete trees with labeled vertices, of order n, are n
1. Assign labels to the vertices of the tree as 1, 2, ..., n.

2. Find the vertex with degree 1 with the smallest inscription, let a; and delete it.
3. Let by its neighboring vertex

4. Repeat the procedure in the remaining subgraph.

5. After n — 2 deletions, the resulting tree has one edge, having created
S: (bll bz, ver ) bn_z).

= S=()




TREES

O Listing of Trees

* Theorem 8:

n-—2

The number of discrete trees with labeled vertices, of order n, are n
1. Assign labels to the vertices of the tree as 1, 2, ..., n.

2. Find the vertex with degree 1 with the smallest inscription, let a; and delete it.
3. Let by its neighboring vertex

4. Repeat the procedure in the remaining subgraph.

5. After n — 2 deletions, the resulting tree has one edge, having created
S: (bll bz, ver ) bn_z).

3 6 = S = (4)
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O Listing of Trees

* Theorem 8:

n-—2

The number of discrete trees with labeled vertices, of order n, are n
1. Assign labels to the vertices of the tree as 1, 2, ..., n.

2. Find the vertex with degree 1 with the smallest inscription, let a; and delete it.
3. Let by its neighboring vertex

4. Repeat the procedure in the remaining subgraph.

5. After n — 2 deletions, the resulting tree has one edge, having created
S: (bll bz, ver ) bn_z).

i__o——z—@s — S=(4,1)
4
7 8




TREES

O Listing of Trees

* Theorem 8:

n-—2

The number of discrete trees with labeled vertices, of order n, are n
1. Assign labels to the vertices of the tree as 1, 2, ..., n.

2. Find the vertex with degree 1 with the smallest inscription, let a; and delete it.
3. Let by its neighboring vertex

4. Repeat the procedure in the remaining subgraph.

5. After n — 2 deletions, the resulting tree has one edge, having created
S: (bll bz, ver ) bn_z).

— S=(4,1,5) @
4
7 8




TREES

O Listing of Trees

* Theorem 8:

n-—2

The number of discrete trees with labeled vertices, of order n, are n
1. Assign labels to the vertices of the tree as 1, 2, ..., n.

2. Find the vertex with degree 1 with the smallest inscription, let a; and delete it.
3. Let by its neighboring vertex

4. Repeat the procedure in the remaining subgraph.

5. After n — 2 deletions, the resulting tree has one edge, having created
S: (bll bz, ver ) bn_z).

1 5

o—%i = S=(4,1,5,1) o
a4
8




TREES

O Listing of Trees

* Theorem 8:

n-—2

The number of discrete trees with labeled vertices, of order n, are n
1. Assign labels to the vertices of the tree as 1, 2, ..., n.

2. Find the vertex with degree 1 with the smallest inscription, let a; and delete it.
3. Let by its neighboring vertex

4. Repeat the procedure in the remaining subgraph.

5. After n — 2 deletions, the resulting tree has one edge, having created
S: (bll bz, ver ) bn_z).

= S=(4,1,5,1,4) @
4
8




TREES

O Listing of Trees

* Theorem 8:

n-—2

The number of discrete trees with labeled vertices, of order n, are n
1. Assign labels to the vertices of the tree as 1, 2, ..., n.

2. Find the vertex with degree 1 with the smallest inscription, let a; and delete it.
3. Let by its neighboring vertex

4. Repeat the procedure in the remaining subgraph.

5. After n — 2 deletions, the resulting tree has one edge, having created
S: (bll bz, ver ) bn_z).

= $=(4,1,5,1,4,5) @
8




TREES

O Listing of Trees

Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

Prufer Encoding

Input: A tree T with numerical labeling on its vertices a; (1 < i < n)
Output: A Prufer sequence of length n — 2

) Fori=1:1:n— 2

2) Let v the vertex with the minimum label

3) Let b; the label of the only neighbor of vertex v
4y T« T—v

5) Return S(bl, bz, bn_z)




TREES

O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

We can build a tree T in a unique way from S = (bq, by,

.., bp_7) containing non-
pending vertices (vertices of degree 1).

* Each element of S = (bq, by, ..., by_3) may take values 1 < b; < n
(wherel < i < n—2) =>n" 2

= $=(4,1,5,1,4,5)
¢

<t )

Find the less number in range [1, n] that does not appear in S (Prufer Decoding).




TREES

O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

* We can build a tree T in a unique way from S = (b4, by, ..., by_) containing non-

pending vertices (vertices of degree 1).

1. LetlistL = (1,2, ...,n).

2. Select from L the minimum label, let [, which does not belong to S.
3. The edge (l4,51) belongs to T

4. Delete l; from L and s of S.

5. Repeat with the new sequences L and S.

L=(@1,2,3,4,5,6,7,8)

S=(4,1,5,1,4,5)




TREES

O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

* We can build a tree T in a unique way from S = (b4, by, ..., by_) containing non-

pending vertices (vertices of degree 1).

1. LetlistL = (1,2, ...,n).

2. Select from L the minimum label, let [, which does not belong to S.
3. The edge (l4,51) belongs to T

4. Delete l; from L and s of S.

5. Repeat with the new sequences L and S.

L=(@1,2,3,4,5,6,7,8)

S=(4,1,5,1,4,5)
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O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

* We can build a tree T in a unique way from S = (bq, by, ..., b, _5) containing non-

pending vertices (vertices of degree 1).

1. LetlistL = (1,2, ...,n).

2. Select from L the minimum label, let [, which does not belong to S.
3. The edge (l4,51) belongs to T

4. Delete l; from L and s of S.

5. Repeat with the new sequences L and S.

L=(1,2,3,4,5,6,178)

S=(4,1,5,1,4,5)

&2 O—0OwN

(294) -
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O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

* We can build a tree T in a unique way from S = (bq, by, ..., b, _5) containing non-

pending vertices (vertices of degree 1).

1. LetlistL = (1,2, ...,n).

2. Select from L the minimum label, let [, which does not belong to S.
3. The edge (l4,51) belongs to T

4. Delete l; from L and s of S.

5. Repeat with the new sequences L and S.

L=@1,x,3,4,5,6,7,8)

2
S=(X91’5919435) 3 4

(294) - (391)
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O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

* We can build a tree T in a unique way from S = (bq, by, ..., b, _5) containing non-

pending vertices (vertices of degree 1).

1. LetlistL = (1,2, ...,n).

2. Select from L the minimum label, let [, which does not belong to S.
3. The edge (l4,51) belongs to T

4. Delete l; from L and s of S.

5. Repeat with the new sequences L and S.

L=(,x,x,4,5,6,7,8)
S = (X’ X’ 5’ 1’ 4’ 5)

(294) - (391) - (695)
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O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

* We can build a tree T in a unique way from S = (bq, by, ..., b, _5) containing non-

pending vertices (vertices of degree 1).

1. LetlistL = (1,2, ...,n).

2. Select from L the minimum label, let [, which does not belong to S.
3. The edge (l4,51) belongs to T

4. Delete l; from L and s of S.

5. Repeat with the new sequences L and S.

L=(1,x,x,4,5,%x,7,8) 1 i 5

3 O—0 6
S=(x,x,x,1,4,5) a
7

(294) - (391) - (695) - (791)




TREES

O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

* We can build a tree T in a unique way from S = (bq, by, ..., b, _5) containing non-

pending vertices (vertices of degree 1).

1. LetlistL = (1,2, ...,n).

2. Select from L the minimum label, let [, which does not belong to S.
3. The edge (l4,51) belongs to T

4. Delete l; from L and s of S.

5. Repeat with the new sequences L and S.
2
L=(]‘,X’X,4,5,X’X’8) 1 5
3 0—0 6
S=(x,x,x,x,4,5) 4

(294) - (391) - (695) - (791) - (194)




TREES

O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

* We can build a tree T in a unique way from S = (bq, by, ..., b, _5) containing non-

pending vertices (vertices of degree 1).

1. LetlistL = (1,2, ...,n).

2. Select from L the minimum label, let [, which does not belong to S.
3. The edge (l4,51) belongs to T

4. Delete l; from L and s of S.

5. Repeat with the new sequences L and S.

L = (X’ X, X’ 4’ 5’ X’ X, 8)

S=(x,x, x, X, X, 5)

(294) - (391) - (695) - (791) - (194) - (495)
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O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

* We can build a tree T in a unique way from S = (bq, by, ..., b, _5) containing non-

pending vertices (vertices of degree 1).

1. LetlistL = (1,2, ...,n).

2. Select from L the minimum label, let [, which does not belong to S.
3. The edge (l4,51) belongs to T

4. Delete l; from L and s of S.

5. Repeat with the new sequences L and S.

L = (X’ X, X’ X’ 5’ X’ X’ 8)

S = (X’ X’ X’ X’ X’ X)

(294) - (391) - (695) - (791) - (194) - (495) - (5’8)
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O Listing of Trees

* Theorem 8:

The number of discrete trees with labeled vertices, of order n, are n™ 2

* We can build a tree T in a unique way from S = (bq, by, ..., b, _5) containing non-

pending vertices (vertices of degree 1).

* Prufer Decoding
Input: A Prufer sequence of lengthn — 2

Output: A tree T with numerical labeling on its vertices a; (1 < i < n)
1) Initialize empty list P (Prufer sequence)
2) Initialize list L = 1,2, ... ,n
3) F « forest from n independent vertices enumerated from 1 ton
4 Fori=1:1:n—2
Let k the minimum numberin L : € P
Let j the first number in P

c.  Connect by an edge the vertices k and j

d.  Delete k from L

e.  Delete the first appearance of j from P
5 Connect by an edge the vertices with the remaining numbers of P
6) Return the forest (tree)F

®

o




TREES

O Listing of Trees

* Theorem 8:

n-—2

The number of discrete trees with labeled vertices, of order n, are n
* Corollary:

The number of discrete rooted trees with labeled vertices, of order n, are n*1
o In a rooted tree with labeled vertices, a vertex is defined to be the root.

o A non-rooted tree is also called free.

o For each one of the n™ 2 discrete trees with labeled vertices there are

produced n different rooted trees, as any vertex can be defined as root.
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o .
Looca

O Spanning Trees ek i
* From ecach connected graph G(V,E) can be produced 2! different |
subgraphs. Many of these graphs are trees.

* Spanning Tree of a connected graph G is called the tree T that is
subgraph of G and it holds that V(T) = V(G).

® A spanning Tree is also called Skeleton, or Scaffolding, or Maximal Tree

of G.

* A non-connected graph G of k components has a Spanning Forest of

k Spanning Trees.
® The edges of a Spanning Tree are called Branches.

® The vertices of G that are not Branches of its Spanning Tree are called

Chotrds.
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O Spanning Trees

Theorem 9:

Every connected graph has at least one Spanning Tree.

o If the connected graph is a Tree then the Spanning Tree is the graph.

o Otherwise, a Spanning Tree can be constructed by deleting sequentially
edges that belong to cycles wuntil only bridges are left.

o The number of the deleted edges equals the number of chords of the
graph.




TREES

O Spanning Trees

Theorem 9:

Every connected graph has at least one Spanning Tree.

o If the connected graph is a Tree then the Spanning Tree is the graph.

o Otherwise, a Spanning Tree can be constructed by deleting sequentially
edges that belong to cycles wuntil only bridges are left.

o The number of the deleted edges equals the number of chords of the
graph.

Corollary:

Every connected graph G of n vertices and m edges can be considered
as the union of a Spanning Tree T of n—1 branches and
a subgraph T of m — n + 1 chords.

o Subgraph T is the complement of Tree T by the graph G, and it is
called Chord Set or CoTree. Hence, it holds that G = T U T.
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O Spanning Trees
* Theorem 10:

If in a graph G it holds that d(G) = k, and the graph Tis a tree
of k + 1 vertices , then T is a Spanning Tree of G
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O Spanning Trees
* Theorem 10:

If in a graph G it holds that d(G) = k, and the graph Tis a tree
of k + 1 vertices , then T is a Spanning Tree of G

Inductively on k ...




TREES

O Spanning Trees
* Theorem 10:

If in a graph G it holds that d(G) = k, and the graph Tis a tree
of k + 1 vertices , then T is a Spanning Tree of G

Inductively on k ...

o If k =0,then T = Kj is a subgraph of each graph.




TREES

O Spanning Trees
* Theorem 10:

If in a graph G it holds that d(G) = k, and the graph Tis a tree
of k + 1 vertices , then T is a Spanning Tree of G

Inductively on k ...

o If k =0,then T = Kj is a subgraph of each graph.
o If k=1,then T = K; is a subgraph of each non-empty graph




TREES

O Spanning Trees
* Theorem 10:

If in a graph G it holds that d(G) = k, and the graph Tis a tree
of k + 1 vertices , then T is a Spanning Tree of G

Inductively on k ...

o If k =0,then T = Kj is a subgraph of each graph.
o If k=1,then T = K; is a subgraph of each non-empty graph

o Let that the Theorem holds for every tree T; of k vertices and every
graph of vertices of minimum degree k — 1. We will prove the truth
for every tree T of kq vertices and every graph G with vertices of
minimum degree k.




TREES

O Spanning Trees
* Theorem 10:

If in a graph G it holds that d(G) = k, and the graph Tis a tree
of k + 1 vertices , then T is a Spanning Tree of G

Inductively on k ...

o If k =0,then T = Kj is a subgraph of each graph.
o If k=1,then T = K; is a subgraph of each non-empty graph

o Let that the Theorem holds for every tree T; of k vertices and every
graph of vertices of minimum degree k — 1. We will prove the truth
for every tree T of kq vertices and every graph G with vertices of
minimum degree k.

= Let v avertex of degree 1, of tree T.

= Let that vertex v is adjacent to vertex w € T




TREES

O Spanning Trees
* Theorem 10:

If in a graph G it holds that d(G) = k, and the graph Tis a tree
of k + 1 vertices , then T is a Spanning Tree of G

Inductively on k ...

o If k =0,then T = Kj is a subgraph of each graph.
o If k=1,then T = K; is a subgraph of each non-empty graph

o Let that the Theorem holds for every tree T; of k vertices and every
graph of vertices of minimum degree k — 1. We will prove the truth
for every tree T of kq vertices and every graph G with vertices of
minimum degree k.

= Since T —vis a tree of k vertices, and the vertices of graph
G — v have minimum degree greater or equal to k — 1, from the

assumption of the induction it results that T —v € ¢ — v € G. @
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O Spanning Trees
* Theorem 10:

If in a graph G it holds that d(G) = k, and the graph Tis a tree
of k + 1 vertices , then T is a Spanning Tree of G

Inductively on k ...

o If k =0,then T = Kj is a subgraph of each graph.
o If k=1,then T = K; is a subgraph of each non-empty graph

o Let that the Theorem holds for every tree T; of k vertices and every
graph of vertices of minimum degree k — 1. We will prove the truth
for every tree T of kq vertices and every graph G with vertices of
minimum degree k.

= Since the degree of vertex w in graph G is at least k and the tree
T — v has k — 1 vertices, it results that vertex w has an adjacent

vertex in graph G &€ V(T).

= Itimplies that the tree T is subgraph of G.
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O Spanning Trees

Theorem 11:

n-—2

The number of discrete Spanning Trees of a complete graph K, is n

o For every tree with labeled vertices, of order n, there exists a unique
Spanning Tree of graph K,,. Inversely, from each Spanning Tree of
graph K, results a unique tree with labeled vertices that is of order n.
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TREES

O Spanning Trees

Theorem 12:

The number of discrete Spanning Trees of a complete bipartite graph

- n-1,m-1
Knmis m"™™'n :

o 'The vertices a,b are connected with
a b vertex X by n different  ways.

o The rest n — 1 vertices can be connected
o0 000 either with vertex a or with vertex b

o ...m 2™ 1 discrete Spanning Trees
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O Spanning Trees
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Paths of length 2
[ N ) 000 o0 ® ®

X

Paths of length 4

y Z

o There exists 6 cases with a.b.c and v.z.

o The vertices y and z can be selected by (721) — "("2—1) ways.
o (a) For paths of length 2: n 3"~1

o (b) For paths of length 4: 6 n(nT—l) 3n—2 @
From (a) + (b) - n(n — 1)371—1
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* Theorem 13:

The number of discrete Spanning Trees of a wheel graph W,
n-1 n-1
(%) () -

2




TREES

O Spanning Trees
* Theorem 14 (Matrix-tree theorem) - Kirchoff:

o A = Adjacency Matrix

o C = Degree Matrix

o C — A = Admittance Matrix

o Bjj = (C — A)ij — Minor Matrix
S (—1)i+j |Bl-j| — CoFactor

The number of genetic trees equals the CoFactor
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* Theorem 14 (Matrix-tree theorem) - Kirchoff:

o A = Adjacency Matrix
o C = Degree Matrix
> C(,j))=0fori+#jand C(i,i) = d(v;) for1<i<n.
o C — A — Admittance Matrix
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O Spanning Trees

Theorem 14 (Matrix-tree theorem) - Kirchoff:

O
O
O
o Bjj = (C — A);j — Minor Matrix
» If from a two-dimensional table B with n X n elements delete the
i — th line and the j — th column, then a matrix B;; is called Minor
Matrix in position i, J.

The number of genetic trees equals the CoFactor
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o O O O

S (—1)i+j |Bl-j| — CoFactor
» Cofactor of matrix B in position [,j is called the wvalue
(=D |Byj]

The number of genetic trees equals the CoFactor
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o C = Degree Matrix 1 !
o C — A - Admittance Matrix
o BU = (C - A)l] — Minor Matrix 4 3

S (—1)i+j |Bl-j| — CoFactor

The number of genetic trees equals the CoFactor

0 1 1 1 3 0 0 1 3 -1 -1 -1
1 0 0 0 o 1 0 O -1 1 0 0
1 0 0 1 o 0 2 1 -1 0 2 -1
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o A = Adjacency Matrix

o C = Degree Matrix . 2
o C — A — Admittance Matrix
o Bl] = (C - A)l] — Minor Matrix 4 3

o (=1 |Bi]-| — CoFactor

The number of genetic trees equals the CoFactor

1 1 0 0 : ’ ! (—1)? |B11| = CoFactor
' 0o 2 -

-1 0 2 -1 0 1 5

-1 0 -1 2
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O Spanning Trees

Fundamental Circuit: A cycle created by a Spanning Tree and a Chord
Total Chotdssm —n + 1

G=TuT

Number of fundamental circuits: m —n + 1

Performing circular rotations we can produce all the Spanning Trees.
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Fundamental Circuit: A cycle created by a Spanning Tree and a Chord
Total Chotdssm —n + 1

G=TuT

Number of fundamental circuits: m —n + 1

Performing circular rotations we can produce all the Spanning Trees.

1) Select a Spannint Tree T.

2) Insert an edge = C; fundamental circuit

3) Delete one-by-one the edges of Cjthere are produced Ty, T, ..., Tk
Spanning Trees

4) Insert a new edge in Cjq
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* Fundamental Circuit: A cycle created by a Spanning Tree and a Chord

* Total Chordsm—n + 1
s G=TUT
®* Number of fundamental circuitss:m —n + 1

® Performing circular rotations we can produce all the Spanning Trees.

1) Select a Spannint Tree T.

2) Insertan edge = C(; fundamental circuit

3) Delete one-by-one the edges of Cjthere are produced Ty, T, ..., Tk
Spanning Trees

4) Insert a new edge in Cjq
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O Spanning Trees

Fundamental Circuit: A cycle created by a Spanning Tree and a Chord
Total Chotdssm —n + 1

G=TuT

Number of fundamental circuits: m —n + 1

Performing circular rotations we can produce all the Spanning Trees.

1) Select a Spannint Tree T.

2) Insertan edge = C(; fundamental circuit

3) Delete one-by-one the edges of Cjthere are produced Ty, T, ..., Tk
Spanning Trees

4) Insert a new edge in Cjq

G
u —
-
T
selecting random T can be

produced all the Spanning Trees of G
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* Distance of Spanning Trees is the number of edges that belong to a

Spanning Tree but not in another.

o dist(T;, T;) = dist(T;, T;)

o dist(T;, T;) = 0, (dist(T;, T;) = 0)

o dist(T;, T;) < dist(T;, T,) + dist(T,, T})

« Theorem 15:

The maximum distance between two Spanning Trees T; and Tj of a

connected graph G (V, E') is max (dist(Ti, T])) <min(n—1m-n-—1)

« Central is the Spanning Tree Ty if it holds that (dist(To,Tl-)) <
max(dist(T, Tl-))VT Spanning Trees of G. Hence, a graph may has
more than one Central Spanning Trees

+ Weighted Spanning Trees: Find Minimum Spanning Trees utilizing the
algorithms of Kruskal, Prim, or Boruvka.




