

Graph Theory

• Basics

• Trees are connected acyclic graphs

• <u>Theorem 1</u>:

A graph G is a tree *iff* any two vertices are connected with a unique path.

• <u>Theorem 2</u>:

In a tree T it holds that m = n - 1

o Basics

• Trees are connected acyclic graphs

• <u>Theorem 1</u>:

A graph G is a tree *iff* any two vertices are connected with a unique path.

• <u>Theorem 2</u>:

In a tree T it holds that m = n - 1

• For $n = 1 \rightarrow m = 0$ (it holds for n=1)

• Assumption: Let that it holds for all the tree with $k \leq n$ vertices, $k \geq 2$

- Let T a tree with n vertices and m edges, and $e \in T$
- Delete *e* from $T \Rightarrow T e$ results to two trees $\Rightarrow T_1(n_1, m_1)$ and $T_2(n_2, m_2)$
 - 1. from the assumption it holds that $m_1 = n_1 1$ and $m_2 = n_2 1$
 - 2. $n = n_1 + n_2$ and $m = m_1 + m_2 + 1$

 $(1),(2) \Rightarrow m = (n_1 - 1) + (n_2 - 1) + 1 = n_1 + n_2 - 1 = n - 1$

• Basics

• Trees are connected acyclic graphs

• <u>Theorem 1</u>:

A graph G is a tree *iff* any two vertices are connected with a unique path.

• <u>Theorem 2</u>:

In a tree T it holds that m = n - 1

• <u>Corollary 1</u>:

In each tree there exist at least two vertices with degree 1

• Basics

• Trees are connected acyclic graphs

• <u>Theorem 1</u>:

A graph G is a tree *iff* any two vertices are connected with a unique path.

• <u>Theorem 2</u>:

In a tree T it holds that m = n - 1

• <u>Corollary 1</u>:

In each tree there exist at least two vertices with degree 1

• It holds that 2m = 2(n-1)

• Let
$$d_1, d_2, \dots, d_n$$
 and $d_1 = 1$ and $d_i \ge 2$

• Then $\sum_{i=1}^{n} d_i \ge 1 + 2(n-1) = 2n-1$ • it holds $\sum_{i=1}^{n} d_i = 2m = 2(n-1) = 2n-2$ Contradiction!

• Basics

• Trees are connected acyclic graphs

• <u>Theorem 1</u>:

A graph G is a tree *iff* any two vertices are connected with a unique path.

• <u>Theorem 2</u>:

In a tree T it holds that m = n - 1

• <u>Corollary 1</u>:

In each tree there exist at least two vertices with degree 1.

Corollary 2 (necessary but not sufficient condition):
 A non increasing sequence of integers, let S: d₁, d₂, ..., d_n belongs to a tree only if every d_i is a positive integer and it holds that

$$\sum_{i=1} d_i = 2(n-1)$$

7

• Basics

• <u>Theorem 3</u>:

An acyclic graph G with n vertices and n-1 edges is connected

- Let that there exist a graph G with n vertices and n 1 edges which is not connected.
- In that case, it is composed by two or more components.
- Let that it is composed by two components G_1 and G_2 .
- We assume an edge let (v, w): $v \in G_1$ and $w \in G_2$. So, no cycle is constructed, since before there was no other path between v and w.
- Hence the graph *G* is a connected acyclic graph (i.e., tree) with *n* vertices and *n* edges. <u>Contradiction to Theorem 2.</u>

• Basics

• <u>Theorem 3</u>:

An acyclic graph G with n vertices and n - 1 edges is connected

• <u>Theorem 4</u>:

Every connected graph G with n vertices and n - 1 edges is tree

• <u>Theorem 5</u>:

A graph is a tree if it is minimally connected

• Basics

- <u>Tree Requirements</u>:
 - A connected graph G with n vertices is tree:
 - If it does not contain cycles
 - If there exist a unique path between any arbitrary pair of vertices
 - If every edge is a bridge
 - If it is composed by n 1 edges
 - If it contains at least two vertices of degree 1 ($n \ge 2$)
 - If it is produced only on cycle by adding an edge.

• Basics

• <u>Corollary 3</u>:

A forest (of trees) with n vertices and k components (trees) has ??? edges

• Basics

• <u>Corollary 3</u>:

A forest (of trees) with *n* vertices and *k* components (trees) has n - k edges

• Basics

• <u>Corollary 3</u>:

A forest (of trees) with n vertices and k components (trees) has n - k edges

• <u>Theorem 6 (Jordan, 1869)</u>:

A tree has center consisted by one or two vertices.

• <u>Corollary 4</u>:

If the center of a tree is consisted by two vertices, then they are adjacent and are called <u>bicenters</u>.

• Basics

• <u>Corollary 3</u>:

A forest (of trees) with n vertices and k components (trees) has n - k edges

• <u>Theorem 6 (Jordan, 1869)</u>:

A tree has center consisted by one or two vertices.

• <u>Corollary 4</u>:

If the center of a tree is consisted by two vertices, then they are adjacent and are called <u>bicenters</u>.

• Basics

• <u>Corollary 3</u>:

A forest (of trees) with n vertices and k components (trees) has n - k edges

• <u>Theorem 6 (Jordan, 1869)</u>:

A tree has center consisted by one or two vertices.

• <u>Corollary 4</u>:

If the center of a tree is consisted by two vertices, then they are adjacent and are called <u>bicenters</u>.

• Listing of Trees

• <u>Theorem 8</u>:

Suppose the sum of the positive integers $d_1, d_2, ..., d_n$ (where $n \ge 2$) is 2n-2. The number of trees with n nodes, where node degrees are $d_1, d_2, ..., d_n$, equals: $\frac{(n-2)!}{(d_1-1)!(d_2-1)! ... (d_n-1)!}$

• Listing of Trees

• <u>Theorem 8</u>:

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

Arthur Cayley 1857

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

Arthur Cayley 1857 $C_k H_{2k+2}$, number of isomers

Carbon : 4 bonds

Hydrogen: 1 bond

$$n = k + 2k + 2 = 3k + 2$$
$$m = \frac{\Sigma d(v)}{2} = \frac{4k + 2k + 2}{2} = 3k + 1$$

19

• Listing of Trees

• <u>Theorem 8</u>:

• Listing of Trees

• <u>Theorem 8</u>:

- 1. Assign labels to the vertices of the tree as 1, 2, ..., n.
- 2. Find the vertex with degree 1 with the smallest inscription, let a_1 and delete it.
- 3. Let b_1 its neighboring vertex
- 4. Repeat the procedure in the remaining subgraph.
- 5. After n − 2 deletions, the resulting tree has one edge, having created
 S: (b₁, b₂, ..., b_{n−2}).

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

- 1. Assign labels to the vertices of the tree as 1, 2, ..., n.
- 2. Find the vertex with degree 1 with the smallest inscription, let a_1 and delete it.
- 3. Let b_1 its neighboring vertex
- 4. Repeat the procedure in the remaining subgraph.
- 5. After n − 2 deletions, the resulting tree has one edge, having created
 S: (b₁, b₂, ..., b_{n−2}).

22

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

- 1. Assign labels to the vertices of the tree as 1, 2, ..., n.
- 2. Find the vertex with degree 1 with the smallest inscription, let a_1 and delete it.

S = ()

- 3. Let b_1 its neighboring vertex
- 4. Repeat the procedure in the remaining subgraph.
- 5. After n − 2 deletions, the resulting tree has one edge, having created
 S: (b₁, b₂, ..., b_{n−2}).

23

• Listing of Trees

• <u>Theorem 8</u>:

- 1. Assign labels to the vertices of the tree as 1, 2, ..., n.
- 2. Find the vertex with degree 1 with the smallest inscription, let a_1 and delete it.
- 3. Let b_1 its neighboring vertex
- 4. Repeat the procedure in the remaining subgraph.
- 5. After n − 2 deletions, the resulting tree has one edge, having created
 S: (b₁, b₂, ..., b_{n−2}).

• Listing of Trees

• <u>Theorem 8</u>:

- 1. Assign labels to the vertices of the tree as 1, 2, ..., n.
- 2. Find the vertex with degree 1 with the smallest inscription, let a_1 and delete it.
- 3. Let b_1 its neighboring vertex
- 4. Repeat the procedure in the remaining subgraph.
- 5. After n − 2 deletions, the resulting tree has one edge, having created
 S: (b₁, b₂, ..., b_{n−2}).

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

- 1. Assign labels to the vertices of the tree as 1, 2, ..., n.
- 2. Find the vertex with degree 1 with the smallest inscription, let a_1 and delete it.
- 3. Let b_1 its neighboring vertex
- 4. Repeat the procedure in the remaining subgraph.
- 5. After n − 2 deletions, the resulting tree has one edge, having created
 S: (b₁, b₂, ..., b_{n−2}).

S = (4, 1, 5)

• Listing of Trees

• <u>Theorem 8</u>:

- 1. Assign labels to the vertices of the tree as 1, 2, ..., n.
- 2. Find the vertex with degree 1 with the smallest inscription, let a_1 and delete it.
- 3. Let b_1 its neighboring vertex
- 4. Repeat the procedure in the remaining subgraph.
- 5. After n − 2 deletions, the resulting tree has one edge, having created
 S: (b₁, b₂, ..., b_{n−2}).

• Listing of Trees

• <u>Theorem 8</u>:

- 1. Assign labels to the vertices of the tree as 1, 2, ..., n.
- 2. Find the vertex with degree 1 with the smallest inscription, let a_1 and delete it.
- 3. Let b_1 its neighboring vertex
- 4. Repeat the procedure in the remaining subgraph.
- 5. After n − 2 deletions, the resulting tree has one edge, having created
 S: (b₁, b₂, ..., b_{n−2}).

• Listing of Trees

• <u>Theorem 8</u>:

- 1. Assign labels to the vertices of the tree as 1, 2, ..., n.
- 2. Find the vertex with degree 1 with the smallest inscription, let a_1 and delete it.
- 3. Let b_1 its neighboring vertex
- 4. Repeat the procedure in the remaining subgraph.
- 5. After n − 2 deletions, the resulting tree has one edge, having created
 S: (b₁, b₂, ..., b_{n−2}).

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

• Prufer Encoding

Input: A tree *T* with numerical labeling on its vertices a_i ($1 \le i \le n$)

Output: A Prufer sequence of length n - 2

1) For
$$i = 1: 1: n - 2$$

2) Let v the vertex with the minimum label

3) Let b_i the label of the only neighbor of vertex v

4)
$$T \leftarrow T - v$$

5) Return $S(b_1, b_2, ..., b_{n-2})$

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

- We can build a tree T in a unique way from $S = (b_1, b_2, ..., b_{n-2})$ containing nonpending vertices (vertices of degree 1).
- Each element of $S = (b_1, b_2, ..., b_{n-2})$ may take values $1 \le b_i \le n$ (where $1 \le i \le n-2$) $\Rightarrow n^{n-2}$.

• Find the less number in range [1, n] that does not appear in S (Prufer Decoding).

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

• We can build a tree T in a unique way from $S = (b_1, b_2, ..., b_{n-2})$ containing nonpending vertices (vertices of degree 1).

1. Let list
$$L = (1, 2, ..., n)$$
.

- 2. Select from L the minimum label, let l_1 , which does not belong to S.
- 3. The edge (l_1, s_1) belongs to T.
- 4. Delete l_1 from L and s_1 of S.
- 5. Repeat with the new sequences L and S.

L = (1, 2, 3, 4, 5, 6, 7, 8)

S = (4, 1, 5, 1, 4, 5)

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

• We can build a tree T in a unique way from $S = (b_1, b_2, ..., b_{n-2})$ containing nonpending vertices (vertices of degree 1).

1. Let list
$$L = (1, 2, ..., n)$$
.

- 2. Select from L the minimum label, let l_1 , which does not belong to S.
- 3. The edge (l_1, s_1) belongs to T.
- 4. Delete l_1 from L and s_1 of S.
- 5. Repeat with the new sequences L and S.

 $\mathbf{L}=(1,\,2,\,3,\,4,\,5,\,6,\,7,\,8)$

 $\mathbf{S}=(4,\,1,\,5,\,1,\,4,\,5)$

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

• We can build a tree T in a unique way from $S = (b_1, b_2, ..., b_{n-2})$ containing nonpending vertices (vertices of degree 1).

1. Let list
$$L = (1, 2, ..., n)$$
.

- 2. Select from L the minimum label, let l_1 , which does not belong to S.
- 3. The edge (l_1, s_1) belongs to T.
- 4. Delete l_1 from L and s_1 of S.
- 5. Repeat with the new sequences L and S.

L = (1, 2, 3, 4, 5, 6, 7, 8)S = (4, 1, 5, 1, 4, 5)

(2,4) -

2

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

• We can build a tree T in a unique way from $S = (b_1, b_2, ..., b_{n-2})$ containing nonpending vertices (vertices of degree 1).

1. Let list
$$L = (1, 2, ..., n)$$
.

- 2. Select from L the minimum label, let l_1 , which does not belong to S.
- 3. The edge (l_1, s_1) belongs to T.
- 4. Delete l_1 from L and s_1 of S.
- 5. Repeat with the new sequences L and S.

L = (1, x, 3, 4, 5, 6, 7, 8)S = (x, 1, 5, 1, 4, 5)

(2,4) - (3,1)

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

• We can build a tree T in a unique way from $S = (b_1, b_2, ..., b_{n-2})$ containing nonpending vertices (vertices of degree 1).

1. Let list
$$L = (1, 2, ..., n)$$
.

- 2. Select from L the minimum label, let l_1 , which does not belong to S.
- 3. The edge (l_1, s_1) belongs to T.
- 4. Delete l_1 from L and s_1 of S.
- 5. Repeat with the new sequences L and S.

L = (1, x, x, 4, 5, 6, 7, 8)S = (x, x, 5, 1, 4, 5)

(2,4) - (3,1) - (6,5)

1 ↓ 5 3 ○ ○ ○ 6
• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

• We can build a tree T in a unique way from $S = (b_1, b_2, ..., b_{n-2})$ containing nonpending vertices (vertices of degree 1).

1. Let list
$$L = (1, 2, ..., n)$$
.

- 2. Select from L the minimum label, let l_1 , which does not belong to S.
- 3. The edge (l_1, s_1) belongs to T.
- 4. Delete l_1 from L and s_1 of S.
- 5. Repeat with the new sequences L and S.

L = (1, x, x, 4, 5, x, 7, 8)S = (x, x, x, 1, 4, 5)(2,4) - (3,1) - (6,5) - (7,1)

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

• We can build a tree T in a unique way from $S = (b_1, b_2, ..., b_{n-2})$ containing nonpending vertices (vertices of degree 1).

1. Let list
$$L = (1, 2, ..., n)$$
.

- 2. Select from L the minimum label, let l_1 , which does not belong to S.
- 3. The edge (l_1, s_1) belongs to T.
- 4. Delete l_1 from L and s_1 of S.
- 5. Repeat with the new sequences L and S.

L = (1, x, x, 4, 5, x, x, 8)S = (x, x, x, x, 4, 5) (2,4) - (3,1) - (6,5) - (7,1) - (1,4)

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

• We can build a tree T in a unique way from $S = (b_1, b_2, ..., b_{n-2})$ containing nonpending vertices (vertices of degree 1).

1. Let list
$$L = (1, 2, ..., n)$$
.

- 2. Select from L the minimum label, let l_1 , which does not belong to S.
- 3. The edge (l_1, s_1) belongs to T.
- 4. Delete l_1 from L and s_1 of S.
- 5. Repeat with the new sequences L and S.

L = (x, x, x, 4, 5, x, x, 8)S = (x, x, x, x, x, 5)

(2,4) - (3,1) - (6,5) - (7,1) - (1,4) - (4,5)

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

• We can build a tree T in a unique way from $S = (b_1, b_2, ..., b_{n-2})$ containing nonpending vertices (vertices of degree 1).

1. Let list
$$L = (1, 2, ..., n)$$
.

- 2. Select from L the minimum label, let l_1 , which does not belong to S.
- 3. The edge (l_1, s_1) belongs to T.
- 4. Delete l_1 from L and s_1 of S.
- 5. Repeat with the new sequences L and S.

L = (x, x, x, x, 5, x, x, 8)

 $\mathbf{S} = (\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x})$

(2,4) - (3,1) - (6,5) - (7,1) - (1,4) - (4,5) - (5,8)

• Listing of Trees

• <u>Theorem 8</u>:

The number of discrete trees with labeled vertices, of order n, are n^{n-2}

- We can build a tree T in a unique way from $S = (b_1, b_2, ..., b_{n-2})$ containing nonpending vertices (vertices of degree 1).
- Prufer Decoding

Input: A Prufer sequence of length n - 2

Output: A tree *T* with numerical labeling on its vertices a_i ($1 \le i \le n$)

- 1) Initialize empty list *P* (Prufer sequence)
- 2) Initialize list L = 1, 2, ..., n
- 3) $F \leftarrow$ forest from n independent vertices enumerated from 1 to n
- 4) For i = 1: 1: n 2
 - a. Let k the minimum number in $L : \notin P$
 - b. Let j the first number in P
 - c. Connect by an edge the vertices k and j
 - d. Delete k from L
 - e. Delete the first appearance of j from P
- 5) Connect by an edge the vertices with the remaining numbers of P
- 6) Return the forest (tree)F

• Listing of Trees

• <u>Theorem 8</u>:

• Corollary:

The number of discrete rooted trees with labeled vertices, of order n, are n^{n-1}

- In a rooted tree with labeled vertices, a vertex is defined to be the root.
- A non-rooted tree is also called free.
- For each one of the n^{n-2} discrete trees with labeled vertices there are produced n different rooted trees, as any vertex can be defined as root.

• Spanning Trees

- From each connected graph G(V, E) can be produced $2^{|E|}$ different subgraphs. Many of these graphs are trees.
- Spanning Tree of a connected graph G is called the tree T that is subgraph of G and it holds that V(T) = V(G).
- A spanning Tree is also called Skeleton, or Scaffolding, or Maximal Tree of *G*.
- A non-connected graph G of k components has a Spanning Forest of k Spanning Trees.
- The edges of a Spanning Tree are called **Branches**.
- The vertices of *G* that are not Branches of its Spanning Tree are called **Chords**.

• Spanning Trees

Every connected graph has at least one Spanning Tree.

- If the connected graph is a Tree then the Spanning Tree is the graph.
- Otherwise, a Spanning Tree can be constructed by deleting sequentially edges that belong to cycles until only bridges are left.
- The number of the deleted edges equals the number of chords of the graph.

• Spanning Trees

Every connected graph has at least one Spanning Tree.

- If the connected graph is a Tree then the Spanning Tree is the graph.
- Otherwise, a Spanning Tree can be constructed by deleting sequentially edges that belong to cycles until only bridges are left.
- The number of the deleted edges equals the number of chords of the graph.

• Corollary:

- Every connected graph G of n vertices and m edges can be considered as the union of a Spanning Tree T of n-1 branches and a subgraph \check{T} of m-n+1 chords.
- Subgraph \check{T} is the complement of Tree T by the graph G, and it is called **Chord Set** or **CoTree**. Hence, it holds that $G = T \cup \check{T}$.

• Spanning Trees

• <u>Theorem 10</u>:

• Spanning Trees

• <u>Theorem 10</u>:

If in a graph G it holds that $d(G) \ge k$, and the graph T is a tree of k + 1 vertices, then T is a Spanning Tree of G

• Spanning Trees

• <u>Theorem 10</u>:

If in a graph G it holds that $d(G) \ge k$, and the graph T is a tree of k + 1 vertices, then T is a Spanning Tree of G

Inductively on k ...

• If k = 0, then $T = K_1$ is a subgraph of each graph.

• Spanning Trees

• <u>Theorem 10</u>:

If in a graph G it holds that $d(G) \ge k$, and the graph T is a tree of k + 1 vertices, then T is a Spanning Tree of G

- If k = 0, then $T = K_1$ is a subgraph of each graph.
- If k = 1, then $T = K_2$ is a subgraph of each non-empty graph

• Spanning Trees

• <u>Theorem 10</u>:

If in a graph G it holds that $d(G) \ge k$, and the graph T is a tree of k + 1 vertices, then T is a Spanning Tree of G

- If k = 0, then $T = K_1$ is a subgraph of each graph.
- If k = 1, then $T = K_2$ is a subgraph of each non-empty graph
- Let that the Theorem holds for every tree T_1 of k vertices and every graph of vertices of minimum degree k 1. We will prove the truth for every tree T of k_1 vertices and every graph G with vertices of minimum degree k.

• Spanning Trees

• <u>Theorem 10</u>:

If in a graph G it holds that $d(G) \ge k$, and the graph T is a tree of k + 1 vertices, then T is a Spanning Tree of G

- If k = 0, then $T = K_1$ is a subgraph of each graph.
- If k = 1, then $T = K_2$ is a subgraph of each non-empty graph
- Let that the Theorem holds for every tree T_1 of k vertices and every graph of vertices of minimum degree k 1. We will prove the truth for every tree T of k_1 vertices and every graph G with vertices of minimum degree k.
 - Let v a vertex of degree 1, of tree T.
 - Let that vertex v is adjacent to vertex $w \in T$

• Spanning Trees

• <u>Theorem 10</u>:

If in a graph G it holds that $d(G) \ge k$, and the graph T is a tree of k + 1 vertices, then T is a Spanning Tree of G

- If k = 0, then $T = K_1$ is a subgraph of each graph.
- If k = 1, then $T = K_2$ is a subgraph of each non-empty graph
- Let that the Theorem holds for every tree T_1 of k vertices and every graph of vertices of minimum degree k 1. We will prove the truth for every tree T of k_1 vertices and every graph G with vertices of minimum degree k.
 - Since T v is a tree of k vertices, and the vertices of graph G v have minimum degree greater or equal to k 1, from the assumption of the induction it results that $T v \subseteq G v \subseteq G$.

• Spanning Trees

• <u>Theorem 10</u>:

If in a graph G it holds that $d(G) \ge k$, and the graph T is a tree of k + 1 vertices, then T is a Spanning Tree of G

- If k = 0, then $T = K_1$ is a subgraph of each graph.
- If k = 1, then $T = K_2$ is a subgraph of each non-empty graph
- Let that the Theorem holds for every tree T_1 of k vertices and every graph of vertices of minimum degree k 1. We will prove the truth for every tree T of k_1 vertices and every graph G with vertices of minimum degree k.
 - Since the degree of vertex w in graph G is at least k and the tree T v has k 1 vertices, it results that vertex w has an adjacent vertex in graph $G \notin V(T)$.
 - It implies that the tree T is subgraph of G.

• Spanning Trees

• <u>Theorem 11</u>:

The number of discrete Spanning Trees of a complete graph K_n is n^{n-2}

• For every tree with labeled vertices, of order n, there exists a unique Spanning Tree of graph K_n . Inversely, from each Spanning Tree of graph K_n results a unique tree with labeled vertices that is of order n.

• Spanning Trees

• <u>Theorem 12</u>:

The number of discrete Spanning Trees of a complete bipartite graph $K_{n,m}$ is $m^{n-1}n^{m-1}$.

• $K_{2,n} \rightarrow n \ 2^{n-1}$

- The vertices a, b are connected with vertex x by n different ways.
- The rest n 1 vertices can be connected either with vertex a or with vertex b
- ... $n 2^{n-1}$ discrete Spanning Trees

• Spanning Trees

• <u>Theorem 12</u>:

The number of discrete Spanning Trees of a complete bipartite graph $K_{n,m}$ is $m^{n-1}n^{m-1}$.

•
$$K_{3,n} \rightarrow n^2 3^{n-1}$$

Х

a b c Paths of length 2

Ζ

V

- There exists 6 cases with a,b,c and y,z.
- The vertices y and z can be selected by $\binom{n}{2} = \frac{n(n-1)}{2}$ ways.
- (a) For paths of length 2: $n 3^{n-1}$
- (b) For paths of length 4: 6 $\frac{n(n-1)}{2} 3^{n-2}$

From $(a) + (b) \rightarrow n(n-1)3^{n-1}$

56

• Spanning Trees

• <u>Theorem 12</u>:

The number of discrete Spanning Trees of a complete bipartite graph $K_{n,m}$ is ???.

• Spanning Trees

• <u>Theorem 12</u>:

The number of discrete Spanning Trees of a complete bipartite graph $K_{n,m}$ is $m^{n-1}n^{m-1}$.

• Spanning Trees

• <u>Theorem 12</u>:

The number of discrete Spanning Trees of a complete bipartite graph $K_{n,m}$ is $m^{n-1}n^{m-1}$.

• <u>Theorem 13</u>:

The number of discrete Spanning Trees of a wheel graph $W_{n,}$ is $\left(\frac{3+\sqrt{5}}{2}\right)^{n-1} + \left(\frac{3-\sqrt{5}}{2}\right)^{n-1} - 2$

• Spanning Trees

• <u>Theorem 14 (Matrix-tree theorem) - Kirchoff</u>:

A → Adjacency Matrix
C → Degree Matrix
C - A → Admittance Matrix
B_{ij} = (C - A)_{ij} → Minor Matrix
(-1)^{i+j} |B_{ij}| → CoFactor

• Spanning Trees

- Theorem 14 (Matrix-tree theorem) Kirchoff:
 - $\circ A \rightarrow \text{Adjacency Matrix}$
 - C → Degree Matrix
 - > C(i,j) = 0 for $i \neq j$ and $C(i,i) = d(v_i)$ for $1 \leq i \leq n$.
 - o $C A \rightarrow$ Admittance Matrix
 - $B_{ij} = (C A)_{ij}$ → Minor Matrix
 - $\circ (-1)^{i+j} |B_{ij}| \rightarrow \text{CoFactor}$

• Spanning Trees

- Theorem 14 (Matrix-tree theorem) Kirchoff:
 - A → Adjacency Matrix
 - $C \rightarrow$ Degree Matrix
 - $C A \rightarrow$ Admittance Matrix
 - $\circ B_{ij} = (C A)_{ij} \rightarrow \text{Minor Matrix}$
 - > If from a two-dimensional table B with $n \times n$ elements delete the

i - th line and the j - th column, then a matrix B_{ij} is called Minor Matrix in position i, j.

$$\circ (-1)^{i+j} |B_{ij}| \to \text{CoFactor}$$

• Spanning Trees

• <u>Theorem 14 (Matrix-tree theorem) - Kirchoff</u>:

A → Adjacency Matrix
C → Degree Matrix
C - A → Admittance Matrix
B_{ij} = (C - A)_{ij} → Minor Matrix
(-1)^{i+j} |B_{ij}| → CoFactor
Cofactor of matrix B in position i, j is called the value (-1)^{i+j} |B_{ij}|

• Spanning Trees

- <u>Theorem 14 (Matrix-tree theorem) Kirchoff</u>:
 - A → Adjacency Matrix
 C → Degree Matrix
 C A → Admittance Matrix
 B_{ij} = (C A)_{ij} → Minor Matrix
 (-1)^{i+j} |B_{ij}| → CoFactor
 - The number of genetic trees equals the CoFactor

• Spanning Trees

- <u>Theorem 14 (Matrix-tree theorem) Kirchoff</u>:
 - A → Adjacency Matrix
 C → Degree Matrix
 C A → Admittance Matrix
 B_{ij} = (C A)_{ij} → Minor Matrix
 (-1)^{i+j} |B_{ij}| → CoFactor

• Spanning Trees

- <u>Theorem 14 (Matrix-tree theorem) Kirchoff</u>:
 - A → Adjacency Matrix
 C → Degree Matrix
 C A → Admittance Matrix
 B_{ij} = (C A)_{ij} → Minor Matrix
 (-1)^{i+j} |B_{ij}| → CoFactor

Adjacency Matrix (A)					
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		

• Spanning Trees

- <u>Theorem 14 (Matrix-tree theorem) Kirchoff</u>:
 - $\circ A \rightarrow \text{Adjacency Matrix}$
 - $\circ \boldsymbol{C} \rightarrow \text{Degree Matrix}$
 - $\circ C A \rightarrow \text{Admittance Matrix}$
 - $\circ B_{ij} = (C A)_{ij} \to \text{Minor Matrix}$
 - $\circ \; (-1)^{i+j} \left| B_{ij} \right| \to \text{CoFactor}$

Adjacency Matrix (A)					
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		

De	Degree Matrix (C)					
3	0	0	1			
0	1	0	0			
0	0	2	1			
0	0	0	2			

• Spanning Trees

- <u>Theorem 14 (Matrix-tree theorem) Kirchoff</u>:
 - $\circ A \rightarrow \text{Adjacency Matrix}$
 - $\mathcal{C} \rightarrow \text{Degree Matrix}$
 - $\circ \boldsymbol{C} \boldsymbol{A} \rightarrow \text{Admittance Matrix}$
 - $B_{ij} = (C A)_{ij}$ → Minor Matrix • $(-1)^{i+j} |B_{ij}|$ → CoFactor

Adja	cency	Matrix	(A)	1	egree l	Matrix	(C)	Admi	ittance l	Matrix	(C-A)
0	1	1	1	3	0	0	1	3	-1	-1	-1
1	0	0	0	0	1	0	0	-1	1	0	0
1	0	0	1	0	0	2	1	-1	0	2	-1
1	0	1	0	0	0	0	2	-1	0	-1	2

• Spanning Trees

- <u>Theorem 14 (Matrix-tree theorem) Kirchoff</u>:
 - A → Adjacency Matrix
 C → Degree Matrix
 C A → Admittance Matrix
 B_{ij} = (C A)_{ij} → Minor Matrix
 (-1)^{i+j} |B_{ij}| → CoFactor

Admittance Matrix (C-A)					
3	-1	-1	-1		
-1	1	0	0		
-1	0	2	-1		
-1	0	-1	2		

Minor Matrix (B_{11})				
1	0	0		
0	2	-1		
0	-1	2		

• Spanning Trees

- <u>Theorem 14 (Matrix-tree theorem) Kirchoff</u>:
 - A → Adjacency Matrix
 C → Degree Matrix
 C A → Admittance Matrix
 B_{ij} = (C A)_{ij} → Minor Matrix
 (-1)^{i+j} |B_{ij}| → CoFactor

The number of genetic trees equals the CoFactor

Admittance Matrix (C-A)					
3	-1	-1	-1		
-1	1	0	0		
-1	0	2	-1		
-1	0	-1	2		

Minor Matrix (B_{11})				
1	0	0		
0	2	-1		
0	-1	2		

 $(-1)^2 |B_{11}| \rightarrow \text{CoFactor}$

70

• Spanning Trees

- Fundamental Circuit: A cycle created by a Spanning Tree and a Chord.
- Total Chords: m n + 1
- $G = T \cup \tilde{T}$
- Number of fundamental circuits: m n + 1
- Performing circular rotations we can produce all the Spanning Trees.

• Spanning Trees

- Fundamental Circuit: A cycle created by a Spanning Tree and a Chord.
- Total Chords: m n + 1
- $G = T \cup \tilde{T}$
- Number of fundamental circuits: m n + 1
- Performing circular rotations we can produce all the Spanning Trees.
 - 1) Select a Spannint Tree *T*.
 - 2) Insert an edge $\Rightarrow C_i$ fundamental circuit
 - 3) Delete one-by-one the edges of C_i there are produced $T_1, T_2, ..., T_K$ Spanning Trees
 - 4) Insert a new edge in C_{i+1}

TREES

• Spanning Trees

- Fundamental Circuit: A cycle created by a Spanning Tree and a Chord.
- Total Chords: m n + 1
- $G = T \cup \tilde{T}$
- Number of fundamental circuits: m n + 1
- Performing circular rotations we can produce all the Spanning Trees.
 - 1) Select a Spannint Tree *T*.
 - 2) Insert an edge $\Rightarrow C_i$ fundamental circuit
 - 3) Delete one-by-one the edges of C_i there are produced $T_1, T_2, ..., T_K$ Spanning Trees
 - 4) Insert a new edge in C_{i+1}

TREES

• Spanning Trees

- Fundamental Circuit: A cycle created by a Spanning Tree and a Chord.
- Total Chords: m n + 1
- $G = T \cup \tilde{T}$
- Number of fundamental circuits: m n + 1
- Performing circular rotations we can produce all the Spanning Trees.
 - 1) Select a Spannint Tree *T*.
 - 2) Insert an edge $\Rightarrow C_i$ fundamental circuit
 - 3) Delete one-by-one the edges of C_i there are produced $T_1, T_2, ..., T_K$ Spanning Trees
 - 4) Insert a new edge in C_{i+1}

74

TREES

• Spanning Trees

- **Distance** of Spanning Trees is the number of edges that belong to a Spanning Tree but not in another.
 - $dist(T_i, T_j) = dist(T_j, T_i)$
 - $dist(T_i, T_j) \ge 0, (dist(T_i, T_i) = 0)$
 - $dist(T_i, T_j) \leq dist(T_i, T_u) + dist(T_u, T_j)$

• <u>Theorem 15</u>:

The maximum distance between two Spanning Trees T_i and T_j of a connected graph G(V, E) is $\max(dist(T_i, T_j)) \le \min(n - 1, m - n - 1)$

- **Central** is the Spanning Tree T_0 if it holds that $(dist(T_0, T_i)) \le \max(dist(T, T_i)) \forall T$ Spanning Trees of *G*. Hence, a graph may has more than one Central Spanning Trees
- Weighted Spanning Trees: Find Minimum Spanning Trees utilizing the algorithms of Kruskal, Prim, or Boruvka.